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ABSTRACT Most of the original immunization regimens against severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) were composed of two doses, followed by
a subsequent third booster dose to control the Omicron variant and hence coronavirus
disease 2019 (COVID-19). However, most data generated regarding the fourth dose were
not based on the general population. Therefore, this study aimed to verify the effect of
the fourth COVID-19 vaccine dose in a diverse Brazilian population. This retrospective
observational study was conducted between May and September 2022. We gathered
data on the vaccine regimens and COVID-19 serologic status from 266 healthy volun-
teers who received three or four vaccine doses, as well as COVID-19 diagnosis and
viral genome sequencing from 457 patients with flu-like symptoms. In addition, we
conducted immunoinformatic analysis to assess the conserved epitopes in the locally
circulating viruses. We showed that the fourth dose did not increase the serum levels
of antiviral antibodies, as measured by enzyme-linked immunosorbent assay. However,
it significantly increased neutralizing antibody (NAb) titers against the Omicron variant.
All viral sequences generated in this study were Omicron subvariants, mainly B.A.5.1.
Notably, most NAb epitopes present in the wild-type SARS-CoV-2 were not detected
among the circulating Omicron subvariants. None of the volunteers who received the
third or fourth doses presented COVID-19 for at least 1 year before the study period.
Altogether, these results indicate that the fourth vaccine dose increases the serum levels
of NAbs that recognize highly conserved epitopes in Omicron subvariants.

IMPORTANCE Several additional COVID-19 vaccine doses were administered in the
Brazilian population to prevent the disease caused by the B.1.1.529 (Omicron) variant.
The efficacy of a third dose as a booster is already well described. However, it is
important to clarify the humoral immune response gain induced by a fourth dose. In this
study, we evaluate the effect of the fourth COVID-19 vaccine dose in a diverse Brazilian
population, considering a real-life context. Our study reveals that the fourth dose of
the COVID-19 vaccine increased the neutralizing antibody response against SARS-CoV-2
Omicron and significantly contributed in the reduction of the disease caused by this
variant.

KEYWORDS Omicron subvariants, fourth dose, vaccines, neutralization, epitopes
he emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

caused the coronavirus disease 2019 (COVID-19) in 2019, more than 770 million
people have been affected globally, which has resulted in more than 6.9 million deaths
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(1). Due to great efforts across the globe, several vaccine formulations were clinically
validated in record time and used to fight the COVID-19 pandemic (2, 3). Vaccina-
tion is the most efficient strategy for controlling COVID-19, particularly in severe and
lethal cases (4, 5). Despite this progress, mutations in the main vaccine target (the
spike protein) have resulted in the evolution of SARS-CoV-2 variants that are capable
of circumventing the neutralization activity of serum antibodies elicited in vaccinated
or infected individuals (6-8). This has raised concerns with regard to vaccine efficacy,
especially formulations based on wild-type SARS-CoV-2, which does not contain the
mutated epitopes.

In Brazil, the most commonly used vaccine formulations are Sinovac-CoronaVac
(based on a purified inactivated virus) (9), Oxford/Astrazeneca (AZD1222 or ChAdOx1-S),
and Janssen (Ad26.COV2.S), which are based on an adenovirus vector encoding the
spike protein of SARS-CoV-2 (10, 11), and Pfizer (BNT126b2, RNA-based vaccine) (12, 13).
Except for the Janssen vaccine, the original immunization regimens were composed of
two doses. We previously demonstrated that the antibody levels induced by two vaccine
doses wane over time and are restored by a third booster dose (14). In addition, such a
booster can induce neutralizing antibodies (NAbs) that protect individuals from infection
by Omicron, a variant of concern (VOC), as well as its subvariants (15, 16). Thus, the
importance of a third vaccine dose is widely recognized for combating the COVID-19
pandemic.

As an example of the efficacy of the vaccination policy in Brazil, the number of
COVID-19 cases and deaths diminished over time, according to the progress of vaccine
dose administration in the study area, Barreiras, Brazil (Table 1), based on official
municipal data (17, 18). From the beginning of SARS-CoV-2 circulation in the study area
in 2020, there was an increase in the number of cases and deaths in mid-2021 as a result
of the replacement of viral strains in the early stages of the pandemic by the Gamma
VOC (19). This situation was combated with completion of the original immunization
regimen (two doses) in the city population and administration of additional doses.

The fourth vaccine dose against COVID-19 has been studied previously (20-24).
However, these studies were based on populations comprising elderly and immunocom-
promised individuals. Little is known about the effect of the fourth vaccine dose on
the general population, which is comprised of individuals of different ages, in different
occupations, and with varying health conditions. Therefore, in the present study, we
aimed to evaluate the impact of the fourth COVID-19 vaccine dose on a diverse Brazilian
population with regard to the third vaccine dose and SARS-CoV-2 variants.

TABLE 1 Official COVID-19 epidemiological and vaccination information of the city of Barreiras during the
period of study.

Variable 2020° 2021° 2022°
Number of cases (year)” 8,085 12,356 6,691
Number of cases (May to September)® 4,676 7171 2,865
ICU" occupancy rate (May to September) 35% 53.60% 0%
Deaths (May to September) 82 144 2
Administered vaccine doses’ Vaccination coverage (%)

First dose - 82.28 100
Second dose - 41.91 99.96
Third dose - 0.23 50.78
Fourth dose - - 12.03

%Variables computed in the year of 2020.

®Variables computed in the year of 2021.

“Variables computed in the year of 2022.

“Events computed across the year.

Events computed in the period of May to September of each year.
fICU, intensive care unit.

9Events computed until September of each year.
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RESULTS
Composition and preliminary serological analysis of the study population

The main study population was comprised of 266 volunteers who received either three
(189) or four (77) vaccine doses (Fig. 1A). None of the volunteers who received the third
or fourth doses were infected with SARS-CoV-2 for at least 1 year before the study period,
as determined by the lack of registered evidence of illness. As evidenced by enzyme -
linked immunosorbent assay (ELISA) results, individuals who received three vaccine
doses had significantly higher serum levels of antiviral-specific antibodies (P < 0.001)
than individuals who received four vaccine doses (Fig. 1B). This result indicates that
the serum levels of antibodies capable of specifically recognizing SARS-CoV-2 structural
proteins in ELISA were not boosted with the fourth vaccine dose.

Serological analyses according to the time interval between the last two
vaccine doses

Further analysis showed that the serum levels of SARS-CoV-2 specific antibodies were
statistically indistinguishable when the time interval between the second and third
vaccine doses (Fig. 2A) or between the third and fourth doses (Fig. 2B) was 0-3, 4-6,
7-9, or 10-12 months. On comparison of the serum levels of specific antibodies obtained
from individuals who received three or four vaccine doses to the time interval between
the last two doses, no difference was observed in individuals with a 0- to 3-month
interval between the last two doses (Fig. 2C). In contrast, individuals vaccinated with
three doses displayed significantly higher serum levels of specific antibodies than those
who received four doses when the time interval between the last two doses was 4-6
months (Fig. 2D). However, no statistically significant differences were noted when the
time interval between the last two doses was 7-9 (Fig. 2E) or 10-12 months (Fig. 2F). In
addition, no sustained tendency for an increase or decrease in serum-specific antibody
levels was noted with respect to the time of sample collection following the last vaccine
dose (Fig. S1). Collectively, these results indicate that there was no sustained significant
change in the serum levels of antibodies capable of recognizing viral structural proteins
according to the time interval between the last two doses. These results indicated that
the fourth vaccine dose did not boost the serum levels of antiviral antibodies with
respect to the third dose, regardless of the interval between the last two doses.
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FIG1 Composition and preliminary serological analysis of the study population. (A) The main population was composed of 266 volunteers who were vaccinated

against COVID-19: 189 and 77 individuals received three or four doses, respectively. (B) Serum levels of specific antiviral antibodies [represented as optical

densities (ODs)] of volunteers who were vaccinated with three or four doses were obtained by enzyme - linked immunosorbent assay (ELISA) and analyzed

using the Mann-Whitney U test. The group immunized with three doses presented significantly higher serum levels of specific antibodies (P < 0.001). Medians

of groups were compared using the Mann-Whitney U test. (B) Statistical significance was set as P < 0.05. Statistical power was set to be at least 80%. Standard

deviations (SDs) are given as error bars.
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FIG 2 Serological analyses according to the time interval between the last two doses. Serum levels of specific antibodies were shown to be statistically

indistinguishable when the time interval between the second and third doses (A) and the third and fourth doses (B) was 0-3, 4-6, 7-9, or 10-12 months. When

serum levels of specific antibodies obtained from volunteers who received three or four vaccine doses were compared according to the time interval between

the last two doses, no difference was seen with a 0- to 3-month interval (C). Volunteers who received three doses presented higher serum levels of specific

antibodies than those who received four doses when the time interval between the last two doses was 4-6 months (D). No difference was noted when the time

interval between the last two doses was 7-9 (E) or 10-12 mo (F). Medians of groups were compared using the Kruskal-Wallis test followed by Dunn’s multiple

comparisons (A and B) or the Mann-Whitney U test (C-F). Statistical significance was set as P < 0.05. Statistical power was set to be at least 80%. Standard

deviations (SDs) are given as error bars.

Serological analyses according to the immunization regimen and different
vaccine formulations

Serum levels of antiviral antibodies were measured in samples from individuals who
received three or four vaccine doses under different immunization regimens. As shown
in Fig. 3A, individuals who received three doses of the Pfizer vaccine presented higher
serum levels of antibodies capable of recognizing viral structural proteins than those
who received two doses of the Oxford vaccine, followed by a third dose of the Pfizer
vaccine. No differences were observed in the serum levels of antiviral antibodies in
individuals who received four vaccine doses with respect to the different immunization
regimens (Fig. 3B). In addition, individuals who received three doses of the Pfizer vaccine
presented with higher serum levels of SARS-CoV-2-specific antibodies than those who
received an immunization regimen composed of two initial doses of the Oxford vaccine,
followed by a third dose of the Pfizer vaccine and a fourth dose of the Oxford vaccine
(Fig. 3C). These results indicate that the immunization regimen composed of three
doses of the Pfizer vaccine was probably related to the differences in the serum levels
regarding the 4-6 months’ time interval between the last two doses seen in Fig. 2D.

Antibody neutralization of SARS-CoV-2 variants with respect to vaccination
history

In order to check whether the quantitative analysis directly reflected the serum neutrali-
zation capacity against the Wuhan-WT and/or the Omicron VOC, samples from volun-
teers with different vaccination histories were subjected to a cytopathic effect - based
virus neutralization test (CPE - VNT). As shown in Fig. 4A, no statistical difference was
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FIG 3 Serological analyses according to the immunization regimen. Serum levels of specific antiviral antibodies were measured in samples from volunteers who
were subjected to different immunization regimens composed of three (A) or four (B) vaccine doses. Volunteers who received three doses of the Pfizer vaccine
presented with higher serum levels of antiviral antibodies than those who received two doses of the Oxford vaccine, followed by a third dose of the Pfizer

vaccine. In addition, volunteers who received three doses of the Pfizer vaccine presented with higher serum levels of antiviral antibodies than those who received
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FIG 3 (Continued)

two initial doses of the Oxford vaccine, followed by a third dose with the Pfizer vaccine and a fourth dose with the Oxford vaccine (C). Medians of groups were
compared using the Kruskal-Wallis test followed by Dunn’s multiple comparisons. Statistical significance was set as P < 0.05. Statistical power was set to be at
least 80%. Standard deviations (SDs) are given as error bars.

observed between the Wuhan-NAb titers in samples from individuals vaccinated with
three or four doses. In contrast, significantly higher NAb titers against the Omicron VOC
were observed in samples from volunteers immunized with the four vaccine doses (Fig.
4B). Similar results were observed when all groups were analyzed together (Fig. 4C).
When samples were grouped according to the time interval between the last two doses,
NAb titers of samples from individuals with a time interval of 7-9 months between the
third and fourth doses were significantly higher than those from individuals with a time
interval of 4-6 months between the second and third doses (Fig. 4D). These results
indicate that despite the lower SARS-CoV-2-specific antibody levels as detected by ELISA,
the fourth vaccine dose significantly increased NAb levels against the SARS-CoV-2
Omicron variant.
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FIG 4 Serum neutralization levels against SARS-CoV-2 Wuhan and Omicron variants. Serum samples from volunteers with different vaccine histories were
subjected to cytopathic effect - based virus neutralization test (CPE - VNT) using Wuhan and Omicron SARS - CoV - two variants. No difference was observed
with the Wuhan virus between samples from volunteers who received three or four doses (A). Significantly higher titers of Omicron neutralizing antibodies were
measured in samples from volunteers immunized with four vaccine doses (B). Similar results were observed when all groups were analyzed together (C). When
samples were grouped according to the time interval between the last two doses, neutralizing antibody titers from volunteers with a time interval of 7-9 months
between the third and fourth doses were significantly higher than those observed in volunteers with a time interval of 4-6 months between the second and
third doses (D). Medians of groups were compared using the Mann-Whitney U test (A and B) or the Kruskal-Wallis test followed by Dunn’s multiple comparisons
(C and D). Statistical significance was set at P < 0.05. Statistical power was set to be at least 80%. Some of the dots indicating neutralization titers seem like bars
because they indicate the same values: some volunteers presented the same titers. Standard deviations (SDs) are given as error bars.
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Conservation analysis of NAb epitopes in different Omicron subvariants
circulating in the study area

To better characterize the exposure to VOCs during the study period, we analyzed
samples collected from patients with flu-like symptoms and detected SARS - CoV - 2
in 96 of the 457 samples. Suitable amplicons were generated for 82 samples and were
subjected to genome sequencing. After analysis of genome coverage (at least >20x),
57 samples were deposited in the GISAID - EpiCoV. Analyses using the Pangolin web
application version indicated that only subvariants of the SARS-CoV-2 Omicron VOC
were detected during the study period, as shown in Fig. 5A. Subvariants B.A.5.1, B.A4,
B.A.1.14.1, and B.A.5.2.1 were predominant in the present study. Conservation analysis
of epitopes of S protein of a Wuhan virus and a local Omicron subvariant recognized by
NAbs revealed that most of the immune targets were abrogated in viruses circulating
in the study area during the study period (Fig. 5B). Epitopes located in the N-terminal
domain of the S protein were reduced from eight in Wuhan viruses to one in the locally
circulating viruses. In addition, the number of epitopes located in the receptor-binding

A B
Omicron Domain/subunit Wuhan
subvariants Percentage Number of epitopes
B.A.1 3.75 NTD (51) 3
B.A.2 1.25
B.A.4 21.25 REDIET) 119
B.A.1.1 1.25 52 3
B.A.1.14.1 18.75 Total 135
B.A.4.7 1.25
B.A.5.2 2.5
B.A.5.1 30
B.A.5.1.15 2.5
B.A.5.2.1

Microbiology Spectrum

Omicron
Number of epitopes
1
22
9
31

FIG5 Detection of SARS-CoV-2 variants and analysis of epitope conservation. Only Omicron subvariants were detected in the study area during the study period

of study, according to genomic analysis. Conservation of known neutralizing epitopes among viruses detected in the study area was assessed. Percentages of

Omicron subvariants detected in COVID-19-positive patients in the study area during the period of study (A). Number of known neutralizing epitopes in the

Spike protein of the Wuhan and Omicron subvariants detected in the present study (B). Image representing the trimer of the SARS-CoV-2 Spike protein: subunit

2 (S2) is shown in yellow; N-terminus domain (NTD) is shown in green; receptor-binding domain (RBD) is shown in orange (C). Location of the 100% conserved

neutralizing epitopes in the SARS-CoV-2 Spike protein (D). Conserved epitopes are shown in blue. Zoomed images of conserved epitopes in the RBD and NTD are

shown.
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domain was reduced from 119 in Wuhan viruses to 22 in locally circulating viruses. Only
the epitopes located in subunit 2 (S2) of the S protein were completely conserved. Using
the locations of the spike subunits and domains (Fig. 5C), we identified a few conserved
epitopes in the entire protein structure. There was a reduction from 135 epitopes in the
Wuhan viruses to 31 in the locally circulating viruses (Fig. 5D and B). Collectively, these
results indicate that the study populations were exposed to viruses that conserved the
limited number of epitopes for NAbs with regard to those presented to their immune
systems by vaccines based on the Wuhan-WT SARS-CoV-2.

DISCUSSION

Immunization programs have shown success in controlling COVID-19 worldwide,
especially in severe and lethal cases. In our study area, implementation of the original
vaccination regimens (two doses) and administration of additional doses reduced the
number of cases by half, reduced the intensive care unit occupancy rate, and drastically
reduced the number of deaths (see Table 1). Such progress was achieved by vaccines
based on the wild-type SARS-CoV-2, even when Omicron subvariants were dominant in
the study area during the study period. We have previously shown that a third dose
of a SARS-CoV-2 wild-type-based vaccine is capable of conferring protection against
Omicron subvariants by eliciting NAbs (15). It is also important to understand the impact
of the fourth vaccine dose on the fight against COVID-19. However, studies showing
the immune response and efficacy of the fourth vaccine dose are based on restricted
populations that are mainly composed of elderly, and/or immunocompromised subjects,
and healthcare workers. To understand the impact of the fourth dose in the general
population, we enrolled healthy volunteers of various ages and occupations. In addition,
we monitored viruses circulating in the study area to better understand the antigens
being presented to the study population. It is important to highlight that this study was
conducted before the availability and recommendation of a fifth dose based on bivalent
vaccines, which include a component of the original virus strain, and a component of the
newest viruses: subvariants of the Omicron VOC (BA.1, BA.4, and BA.5) (25, 26).

In contrast to what was observed with administration of the third dose (14), we did
not see a boost in serum levels of antibodies capable of recognizing viral structural
proteins after the fourth dose compared to that observed with the third dose. Surpris-
ingly, we found that the group of immunocompetent individuals, belonging to different
genders, ages, and races enrolled in the present study, that were immunized with up to
three vaccine doses had higher levels of antiviral antibodies than those immunized with
four vaccine doses. In addition, deeper investigation revealed that such difference could
be attributed to the immunization regimen with three doses of the RNA-based Pfizer
vaccine. As reported previously, such a homologous vaccine regimen is significantly
better at inducing antiviral antibodies than other immunization strategies (27, 28), even
in immunocompromised individuals (29).

Compared to the higher antibody levels elicited by the three dose-based regimens,
we found that the fourth dose increased the serum levels of NAbs capable of neutral-
izing the Omicron variant. This result indicated that there was a refinement of the
humoral immune response to neutralize the virus, possibly due to the expansion of
the repertoire of broad B-lymphocyte memory cells against highly conserved epitopes,
as was previously observed with multiple contacts with SARS-CoV-2 antigens (30). This
explanation is supported, at least in part, by our findings that most of the epitopes
recognized by NAbs present in the Wuhan virus were not present in the virus variants
detected during the study period of the present study. There was a reduction of 135
epitopes in the Wuhan S protein to 31 epitopes in the Omicron subvariants detected in
the study area. Thus, it is reasonable to assume that antibodies capable of neutralizing
the Omicron variant are driven by these few conserved epitopes. It is also important
to highlight that these epitopes are fully conserved, and not a single amino acid was
changed from the Wuhan virus to the Omicron viruses. As the study populations were
exposed to viruses that conserved a rather reduced number of epitopes recognized by
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NAbs compared to those presented to their immune systems by vaccines based on the
Wuhan-WT SARS-CoV-2, the explanation given here remains plausible.

Although the above explanations could explain the observed findings, the molecular
mechanisms remain to be investigated further. Conservation of 31 epitopes may be
related to the key biological functions of the spike protein, especially the maintenance
of structural stability and binding to the host cell receptor. A similar limit in mutations
was previously reported in flaviviruses, with the most conserved epitopes recognized by
NAbs concentrated in structures with key biological functions (25, 26). In addition, the
lack of an increase in serum levels of antibodies capable of recognizing viral proteins
in ELISA, in contrast to the increase in serum levels of NAbs, may also be due to
the immunodominance of a few conserved epitopes. Further studies are required to
elucidate these gaps. Nonetheless, we presented robust data supported by proper
statistical analyses, showing that the fourth vaccine dose improved the serum levels of
antibodies capable of neutralizing the Omicron variant in a population that was exposed
to viruses, conserving a limited number of epitopes targeted by their antibodies.

Limitations

The sample size of the main study population in this study was not representative of
the city’s population. We were unable to achieve the intended sample size because of
low enrollment. We had also discrepancies in the numbers of volunteers representing
different time frames between the last two doses. There was a dominance of samples
representing 4-6 months regarding the third dose group, and 7-9 months regarding the
fourth dose group. In addition, serum analyses by ELISA were based only on solid-phase
antigens from the Wuhan-WT SARS-CoV-2. Moreover, we did not perform neutralization
assays with respect to the Omicron subvariants. We used only an Omicron (BA.1) viral
strain. Furthermore, we did not have samples from volunteers who received four doses
of the Pfizer vaccine, a homologous four dose-based regimen, for comparison with the
three dose-based regimens.

Conclusions

In the present study, we presented robust data supported by statistical analyses (minimal
power of 80% for statistical significance), which showed that the fourth vaccine dose
improved the serum levels of antibodies capable of neutralizing the Omicron variant in
a population exposed to viruses that conserved a limited number of epitopes targeted
by NAbs. Our data strongly support the conclusion that four doses of COVID-19 vaccines
based on the Wuhan-WT SARS-CoV-2 can contribute to a reduction in susceptibility to
the Omicron variant and its sub-variants. It is important to highlight that the Brazil-
ian context is representative for the broader society, because there are subgroups
of vaccination regimens that represent the use of homologous, and heterogeneous
schemes, with vaccine platforms based on mRNA, adenovirus vector, or inactivated
viruses. In all cases, individuals who received four vaccine doses seem to have benefited
from a humoral immune response based on NAbs that could prevent disease caused
by Omicron subvariants that were circulating in the study area in the study period. Our
conclusion is that the fourth COVID-19 vaccine dose increased the neutralizing antibody
response against SARS-CoV-2 Omicron variant in a diverse Brazilian population.

MATERIALS AND METHODS
Study design and ethics

This retrospective observational study included two populations from Barreiras, Bahia,
Brazil. Data and samples collected from May to September 2022 were used in this
study. The main population consisted of 266 healthy volunteers (77 males and 189
females) with diverse occupations (students, health professionals, teachers, government
employees, and retirees) aged between 18 and 81 years who received three (n =
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189) or four (n = 77) COVID-19 vaccine doses of Sinovac-CoronaVac, Oxford/Astraze-
neca (AZD1222 or ChAdOx1-S), Janssen (Ad26.COV2.S), or Pfizer (BNT126b2, RNA-based
vaccine), as homologous or heterologous regimens. The group of three doses consisted
of 124 females with average age of 39 + 16.42 years, and 65 males with average
age of 38 = 17.13 years. The group of fourth dose was composed of 65 females
with average age of 37 + 15.11 years, and 12 males with average age of 36 + 13.95
years (Supplementary Material 1). We collected blood samples to obtain immunological
profiles based on ELISA and neutralization assays, as well as their COVID-19 vaccination,
and COVID-19 (disease) histories, according to local health authorities’ official data, as
previously described (14). The second population consisted of 457 patients with flu-like
symptoms (199 males and 258 females), aged between 4 and 84 years, and were enrolled
during a COVID - 19 epidemic that occurred in the city in the period of study. This
population differed from the main population because most enrolled individuals did not
receive the third and/or the fourth doses or in some cases even the original vaccine
regimen (two doses). Additionally, nasopharynx swab samples were collected and used
for molecular diagnosis based on one-step reverse transcription, followed by real-time
polymerase chain reaction (RT-PCR) and viral genome sequencing. The study complied
with the relevant ethical and biosafety guidelines. Ethical approval was obtained from
the Institutional Ethics Committee of the Federal University of Western Bahia (CAAE
40779420.6.0000.8060). All the procedures and possible risks were explained to the
volunteers. Informed consent was obtained from all study participants.

Enzyme-linked immunosorbent assay

Serum samples were analyzed using the EIE COVID-19 IgG N/S kit (Bio-Manguinhos,
Fiocruz, Rio de Janeiro, Brazil) according to the manufacturer’s instructions, as described
previously (14, 15). Serum levels of antibodies specific to the SARS-CoV-2 structural
proteins spike (S) and nucleoprotein (N) were defined according to the optical density
values. Briefly, an ELISA with solid-phase bound N and S recombinant antigens was
performed using serum samples from volunteers. Kit controls and samples were added
to the wells after dilution (1:101) with the kit diluent. After incubation for 30 min at
37°C, plates were washed five times with kit washing buffer. Subsequently, the diluted
(1:100) conjugate provided in the kit was added to each well and the plates were further
incubated for 30 min at 37°C. The plates were then washed five times, and the reaction
was initiated by the addition of the developing solution to the wells. After incubation
at room temperature for 10 min, the reaction was terminated with 2 M H;SO4. The
absorbance was measured at 450 nm.

Cell culture and SARS-CoV-2 propagation

The experiments involving SARS - CoV - 2 were carried out in laboratory biosafety
level 3 (BSL3) facilities, in accordance with the recommendations of the World Health
Organization (WHO). African Green monkey kidney cells Vero E6 (ATCC CRL - 1586) and
Vero CCL - 81 (ATCC CCL - 81) were maintained according to the recommendations of
ATCC. Vero E6 cell monolayer was infected with SARS - CoV - 2 variants to propagate a
viral stock. The following SARS - CoV - 2 strains used in the present study: (i) wild-type
SARS - CoV - 2 (Wuhan strain—WT) (GISAID: EPI_ISL_2499748), a kind gift from Dr. José
Luiz Proenca - Médena (University of Campinas—UNICAMP, Campinas, SP, Brazil); and
(ii) Omicron variant (GISAID: EPI_ISL_6794907), a kind gift from Dr. Edison L. Durigon
(University of Sdo Paulo, USP, Sédo Paulo, SP, Brazil). The SARS - CoV - 2 viral stocks were
subjected to titration [in tissue culture infectious dose (TCID) 50 /mL], as described
previously (15), and were used for viral neutralization tests.
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Cytopathic effect-based virus neutralization test for SARS-CoV-2 WT and
Omicron variants

The CPE - VNT assay was performed in a BSL3 laboratory, according to WHO recommen-
dations. Nab titers against SARS-CoV-2 variants were measured as described previously
(15). Briefly, cell monolayers (5 x 10* Vero CCL - 81 cells/well) in 96 - well culture plates
were exposed to 1 x 10° TCID50/mL of SARS - CoV - 2 Wuhan strain—WT or Omicron
variants that were previously incubated with 1:20-1:1,280 twofold diluted, heat - inacti-
vated human serum samples, in a final volume of 150 pL. After 72 h of incubation, the
plates were evaluated microscopically for the presence of characteristic SARS - CoV - 2
CPEs. The absence of CPEs in the 1:20 diluted sample was considered as a positive result
for the presence of neutralizing antibodies against SARS - CoV - 2.

RNA extraction and RT-PCR

Nucleic acid extraction from nasopharyngeal samples was performed using the Extracta
Kit—Viral RNA and DNA (MVXA - PO16FAST) (Loccus, Brazil) using an Extracta32
instrument (Loccus) as previously described (15). Laboratory diagnosis was based on
one-step reverse transcription followed by RT-PCR using the INFA/INFB/SC2 kit (Bio-Man-
guinhos, Brazil) as described previously (15).

SARS-CoV-2 genome sequencing

Viral RNA was extracted as described above. Complementary DNA and PCR prod-
ucts were obtained using the Midnight RT-PCR Expansion kit (EXP - MRT001) (Oxford
Nanopore Technologies, UK) as per the manufacturer’s instructions, and generated
amplicons of ~1,200 bp that overlapped the entire SARS - CoV - 2 genome. Of the
SARS - CoV - 2 - positive nasopharynx swab samples (n = 96), only those that resul-
ted in the successful generation of amplicons (n = 82) were subjected to genome
sequencing using next-generation sequencing on the Oxford Nanopore Minlon platform
(Oxford Nanopore Technologies). The Rapid Barcoding Kit 96 (SQK - RBK110.96) (Oxford
Nanopore Technologies) was used to barcode the pool of multiple samples, which
was then purified, and 800 ng was used for library preparation and sequencing
using the Oxford Nanopore MinlON SpotON Flow Cells R9 version (Oxford Nanopore
Technologies), following the manufacturer’s instructions. Sequencing was performed
using the so - called rapid precision base in MinKNOW software according to the
defined protocol [Community - Protocol - PCR tiling of SARS - CoV - 2 virus - rapid
barcoding and Midnight RT PCR Expansion (SQK - RBK110.96 and EXP - MRT001)]
(nanoporetech.com). RAMPART (https://artic.network/ncov-2019) was used to monitor
the sequencing run in real time to estimate the depth of coverage (20x) across the
genome for each barcode (https://artic.net/wall). Analysis and consensus generation
were performed according to the pipeline proposed by the ARTIC Network using
the Medaka protocol (artic.network/ncov-2019/ncov2019-bioinformatics-sop.html). New
full-genome sequences of SARS - CoV - 2 obtained in the present study were submit-
ted to the Pangolin web application version v4.1.3 and pangolin - data version v1.17,
available at https://pangolin.cog-uk.io/. Consensus genomes with coverage of >20x (n
= 57) were deposited in the Global Initiative on Data Sharing Avian Influenza EpiCoV
(GISAID - EpiCoV) database (see Supplementary Material 2 for details).

Statistical analyses

The median serum levels of specific and neutralizing antibodies after the third or fourth
dose were compared using the Mann-Whitney U test. For comparison between multiple
(>2) groups, the Kruskal-Wallis test, followed by Dunn’s multiple comparisons, was used.
In all cases, statistical significance was set at P < 0.05. Statistical power was set to be at
least 80%.
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Immunoinformatics

In the present study, data sets comprised of the amino acid sequences of the spike
protein (S) of the Wuhan-WT and Omicron SARS-CoV-2 were built (Supplementary
Material 3). The Wuhan data set was composed of viral sequences generated in different
continents, retrieved from the National Center for Biotechnology Information (https://
www.ncbi.nlm.nih.gov/), and enriched with genomic sequences from GISAID (https://
gisaid.org/). The criteria for selecting the sequences were as follows: (i) complete
sequences; and (ii) absence of unidentified amino acids. The Omicron data set was
composed of sequences generated in the present study from viruses circulating during
the study period. The Wuhan data set consisted of 28 amino acid sequences, whereas
the Omicron database consisted of 22 amino acid sequences. In addition, the amino acid
sequences of the real epitopes for the neutralizing antibodies were retrieved from the
Immune Epitope Database (IEDB) (https://www.iedb.org/). The data set is comprised of
425 epitopes for neutralizing antibodies (Supplementary Material 4). The IEDB conser-
vation analysis tool (http://tools.iedb.org/conservancy) was used to determine epitope
conservation among all SARS-CoV-2 Spike protein sequences, as described previously
(31, 32). In the present study, only 100% conserved epitopes were considered. To
localize highly conserved epitopes, a spike protein model retrieved from the Protein Data
Bank (PDB- https://www.rcsb.org/search/advanced/sequence) was used. Fully conserved
epitopes were identified in a 3D model of the SARS-CoV-2 spike protein (DOI: 10.2210/
pdb7dk3/pdb) (33) using PyMol (https://pymol.org/2/), as described previously (32, 34).
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